avatar
Articles
91
Tags
81
Categories
26

Home
Archive
Tag
Category
Repose
  • Gallery
  • Music
Link
About
Colythme
Search
Home
Archive
Tag
Category
Repose
  • Gallery
  • Music
Link
About

FFT/NTT

常系数线性递推
Created2020-08-04|数论
前置知识多项式除法|取模该部分见 多项式操作 特征值与特征向量(这部分我也不怎么理解,就大概记个结论) 对 $n$ 阶矩阵 $A$ 的特征向量 $\vec{v}$ 与,有特征值 $\lambda$ 满足$$A\vec v = \lambda\vec v$$移项则有 $(\lambda I - A)\vec v = 0$,其中 $I$ 为单位矩阵 那么有解的充要条件是 $det(\lambda I - A) = 0$ 令 $f(\lambda) = det(\lambda I - A)$,即此时可将 $det (\lambda I - A)$ 看作一个 $n$ 阶多项式,则称 $f(\lambda)$ 为矩阵 $A$ 的特征多项式,对矩阵 $A$,其任意特征值 $\lambda_0$ 都满足 $f(\lambda_0) = 0$ $\text{Hamiton-Cayley}$定理对矩阵 $A$ 及其特征多项式 $f(x)$,满足 $f(A) = O$,其中 $O$ 为零矩阵 证明留坑 常系数齐次线性递推求一个满足 $k$ 阶齐次线性递推数列 $h_i$ 的第 $n$ 项,即$$h_n = ...
多项式求逆
Created2020-08-04|算法
首先定义多项式的度数 $degA$ 为多项式 $A(x)$ 的最高次数 那么多项式 $A(x)$ 的逆即为存在多项式 $B(x)$ 使得条件满足:$$A(x)B(x) \equiv 1 \pmod{x^n}$$ 求解过程分治 $FFT$对 $A(x) = \sum\limits_{k = 0}^{n - 1} a_kx^k, B(x) = \sum\limits_{k = 0}^{n - 1} b_kx^k$ 从常数项考虑,有 $b_0 = \frac1{a_0}$,则由 $\sum\limits_{k = 0}^n b_ka_{n - k} = 0$ 可得$$b_k = \sum\limits_{i = 0}^{k - 1} b_i\left(- \frac{a_{k - i}}{a_0}\right)$$ 倍增迭代假设存在多项式 $A(x)$ ,以及其逆 $B(x)$ 满足条件 ,那么必定有$A(x)B(x) \equiv 1 \pmod{x^{\left\lceil\frac{n}{2}\right\rceil}} … (1)$ ,因为 $x^n$ 是 $x^{\left\l ...
多项式操作
Created2020-08-04|数论
多项式求逆该部分见 多项式求逆 多项式除法|取模有 $F(x) = G(x)Q(x) + R(x)$,给定 $F(x)$ 与 $G(x)$,求解 $Q(x), R(x)$,其中 $F(x), G(x)$ 最高次数分别为 $n, m$ 显然地,$Q(x), R(x)$ 的最高次数必定不超过 $n - m, m - 1$,考虑式子变形$$\begin{aligned}&F(x) = G(x)Q(x) + R(x) \\\Rightarrow &F(\frac1x) = G(\frac1x)Q(\frac1x) + R(\frac1x) \\\Rightarrow &x^nF(\frac1x) = x^mG(\frac1x)x^{n - m}Q(\frac1x) + x^{n - m + 1}x^{m - 1}R(\frac1x) \\\end{aligned}$$令 $A_R(x)$ 表示 $A(x)$ 系数翻转后得到的多项式,即 $A(x)$ 系数 $(a_0, a_1, …, a_n)$,$A_R(x)$ 系数 $(a_n, a_{n - 1}, …, a_1) ...
NTT(快速数论变换)
Created2020-08-04|算法
概念引入阶对于$p \in N_+$且$(a, p) = 1$,满足$a^r \equiv 1 (mod p)$的最小的非负$r$为$a$模$p$意义下的阶,记作$\delta_p(a)$ 原根定义:若$p \in N_+$且$a \in N$,若$\delta_p(a) = \phi(p)$,则称$a$为模$p$的一个原根相关定理: 若一个数$m$拥有原根,那么它必定为$2, 4, p^t, 2p^t (p$为奇质数$)$的其中一个 每个数$p$都有$\phi(\phi(p))$个原根   证明:若$p \in N_+$且$(a, p) = 1$,正整数$r$满足$a^r \equiv 1 (mod p)$,那么$\delta(p) | r$,由此推广,可知$\delta(p) | \phi(p)$,所以$p$的原根个数即为$p$之前与$\phi(p)$互质的数,即$\phi(p)$故定理成立       - 若$g$是$m$的一个原根,则$g, g^1, g^2, …, g^{\phi(m)} (mod p)$两两不同     原根求法: ...
FFT(快速傅里叶变换)
Created2020-08-04|算法
概念引入  - 点值表示    对于一个$n - 1$次多项式$A(x)$,可以通过确定$n$个点与值(即$x$和$y$)来表示这唯一的$A(x)$   - 复数    对于一元二次方程    $$x^2 + 1 = 0$$    在实数范围内无解,那么我们将实数范围扩充,就得到了复数,再令$i$为该方程的解,即    $$i^2 = - 1$$    那么就定义$z = a + bi$的数为复数,则有    当$b = 0$时,$z$为实数    当$b \neq 0$时,$z$为虚数    当$a = 0 \&\& b \neq 0$时,$z$为纯虚数    其中,复数满足加法交换律、结合律、乘法分配率等     复数相乘:$z_1 = a_1 + b_1i, z_2 = a_2 + b_2i$,则$z_1 × z_2 = (a_1 + b_1i)(a_2 + b_2i) = (a_1a_2 - b_1b_2) + (a_1b_2 + b_1a_2)i$,它们相乘还是一个复数,在复平面上理解,就是模长相乘,幅角相加     共轭复数:当两个复数实部相同,虚部为 ...
1
avatar
Colythme
NO GAME NO LIFE
Articles
91
Tags
81
Categories
26
Follow Me
Recent Post
Analysis of Horror Game Design | Creators' Gacha Games - Part One2023-09-10
Analysis of Horror Game Design | Creators' Gacha Games - Part Two2023-09-10
Horror Game闲谈012023-09-05
Operating System2023-08-30
ABOUT ME2023-07-14
Categories
  • 3D3
  • AMP Learning3
  • Essays1
  • Game Design2
  • Machine Learning4
  • Operating System1
  • Social Network1
  • Web31
Tags
2-SAT 矩阵乘法 Game Essays 虚树 数学 网络流 二分图 多项式 点分治 GraphTheory OS Game Design 长链剖分 UE 扫描线 3D 归纳 动态点分治 prufer序列 杜教筛 组合数学 卡特兰数 Blockchain FWT 生成树 RL 博弈论 背包DP LCT 二分答案 ThreeJS 斯坦纳树 iClone 最短路 树上DP 线段树 后缀数组 ML 交互题 AtCoder Tarjan 线性基 树形DP FFT/NTT 斜率优化 概率DP 倍增 NLP 构造 数学期望 CRT/ExCRT 状压DP 容斥原理 集训 可持久化线段树 区间DP 边分治 矩阵树定理 整体二分 启发式合并 分块 杂谈 线性DP Web3D Python DigitalHuman AC自动机 OEIS 最小生成树 C++ 动态规划 Avatar 莫比乌斯反演 思维 最短路DP 贪心 ExGCD 生成函数 随机化 后缀自动机 分层DP
Archives
  • September 20233
  • August 20231
  • July 20239
  • February 20231
  • June 20221
  • May 20221
  • September 20211
  • July 20213
©2020 - 2023 By Colythme
Framework Hexo|Theme Butterfly
Search
Loading the Database