avatar
Articles
91
Tags
81
Categories
26

Home
Archive
Tag
Category
Repose
  • Gallery
  • Music
Link
About
Colythme
Search
Home
Archive
Tag
Category
Repose
  • Gallery
  • Music
Link
About

莫比乌斯反演

长乐集训 - NOI模拟赛(三十三)「订正未完成」
Created2020-08-04|比赛
没交 $\text{score:NULL rk:NULL}$ Problem A:区间第k小题面 题解先考虑离线,整体二分,二分答案 $mid$,处理所有 $\le mid$ 的数,那么此时问题就转化为在区间出现次数不超过 $w$ 的数有多少个 不妨关注每个数对询问区间 $[L, R]$ 的贡献,对某个数 $a$,若它是从左往右后 $w$ 个出现为 $a$ 的数,则它的贡献为 $1$,若为倒数第 $w + 1$ 个则贡献为 $- w$,剩下的贡献都为 $0$,那么我们就可以开一个队列,首先总大小(即不删去超过 $w$ 的)算出来,此时计算需要删去的,队列大小未到 $w$ 时没有需要删的,若大于 $w$ 时每次就让队首点贡献减去 $w + 1$,当然之前多减的还要加回来 那么现在就可以考虑从离线转成在线,在整体二分的过程中每一层(即每一次二分的 $[l, r]$)都会建一些可持久化线段树,而它又最多会修改 $O (n \log n)$ 次,开 $O (n \log^2 n)$ 个节点,所以把每一层的可持久化线段树都存下来,在线二分时即可直接查找,总时间复杂度 $O ...
狄利克雷卷积与莫比乌斯反演
Created2020-08-04|算法
概念引入数论函数    指定义域为正整数的函数    定义其加法为逐项相加,即$(f + g)(n) = f(n) + g(n)$    定义其数乘为逐项相乘,即$(xf)(n) = x × f(n)$ 单位元    单位元是集合中一种特别的元素,当单位元与其它元素相结合时,不会改变其它元素的值 逆元    逆元是指可以取消另一给定元素运算的元素,即将其变回单位元 符号表示    $[A]$表示条件$A$是否为真    此处的符号”$*$”表示狄利克雷卷积 狄利克雷卷积  令$t(n) = f(n) * g(n)$,则    $$t(n) = \sum\limits_{i | n} f(i)g(\frac{n}{i})$$   那么狄利克雷卷积显然有下面几个性质: 满足乘法交换律、结合律、分配律 对于单位元$\epsilon(n) = [n = 1]$,满足$\epsilon(n)*f(n) = f(n)$    - 对于每一个$f(1) \ne 1$的数论函数$f(n)$,皆存在其逆元$f^{- 1}(n)$,满足$f(n) * f^{- 1}(n) = \epsilon(n)$,那 ...
洛谷3768 - 简单的数学题
Created2020-08-04|数论
根据Crash的数字表格,很容易可以将式子化简为$$\begin{aligned} Ans &= \sum\limits_{i = 1}^n \sum\limits_{j = 1} ij(i, j) \\ &= \sum\limits_{d = 1}^n d^3 \sum\limits_{k = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(k) k^2 \left( \sum\limits_{i = 1}^{\left\lfloor\frac{n}{kd}\right\rfloor} i \right)^2 \end{aligned}$$感觉 $d, k$ 放在一起式子无法继续化简,主要是有 $kd$ 存在,故令 $T = kd$ ,则有$$Ans = \sum\limits_{T = 1}^n \left( \sum\limits_{i = 1}^{\left\lfloor\frac{n}{T}\right\rfloor} i \right)^2 T^2 \sum\limits_{d | T} d \mu(\frac{T ...
「国家集训队」Crash的数字表格
Created2020-08-04|数论
题意求 $\sum\limits_{i = 1}^N \sum\limits_{j = 1}^M lcm (i, j)$ Solution易知,原式$$\sum\limits_{i = 1}^N \sum\limits_{j = 1}^M \frac{ij}{\gcd (i, j)}$$枚举 $\gcd (i, j)$ ,且将 $d$ 提出来得$$\sum\limits_{d = 1}^{\min (N, M)} d \sum\limits_{i = 1}^{\left\lfloor\frac{N}{d}\right\rfloor} \sum\limits_{j = 1}^{\left\lfloor\frac{M}{d}\right\rfloor} ij[(i, j) = 1]$$将公式 $\sum\limits_{k | n} \mu(k) = [n = 1]$ 代入,得$$\sum\limits_{d = 1}^{\min (N, M)} d \sum\limits_{i = 1}^{\left\lfloor\frac{N}{d}\right\rfloor} \sum\limits ...
「NOI2016」循环之美
Created2020-08-04|数论
题意求解 $1 \le x \le n, ~ 1 \le y \le m$ 中满足在 $k$ 进制下 $\frac{x}{y}$ 是有限循环小数的个数 题解很好然后我一开始在计算器上敲了半个小时然后由于眼瞎并且归纳能力差并没有发现规律 设 $\frac{x}{y}$ 的循环节长度为 $l$,则有$$\begin{aligned}\frac{xk^l}{y} - \left\lfloor\frac{xk^l}{y}\right\rfloor &= \frac{x}{y} - \left\lfloor\frac{x}{y}\right\rfloor \\xk^l - \left\lfloor\frac{xk^l}{y}\right\rfloor y &= x - \left\lfloor\frac{x}{y}\right\rfloor y \\xk^l &\equiv x \pmod y \\k &\equiv 1 \pmod y\end{aligned}$$也就是说只要满足 $y \bot k$ 即可满足题意,故可将问题化为$$\begin{aligned ...
1
avatar
Colythme
NO GAME NO LIFE
Articles
91
Tags
81
Categories
26
Follow Me
Recent Post
Analysis of Horror Game Design | Creators' Gacha Games - Part One2023-09-10
Analysis of Horror Game Design | Creators' Gacha Games - Part Two2023-09-10
Horror Game闲谈012023-09-05
Operating System2023-08-30
ABOUT ME2023-07-14
Categories
  • 3D3
  • AMP Learning3
  • Essays1
  • Game Design2
  • Machine Learning4
  • Operating System1
  • Social Network1
  • Web31
Tags
2-SAT 矩阵乘法 Game Essays 虚树 数学 网络流 二分图 多项式 点分治 GraphTheory OS Game Design 长链剖分 UE 扫描线 3D 归纳 动态点分治 prufer序列 杜教筛 组合数学 卡特兰数 Blockchain FWT 生成树 RL 博弈论 背包DP LCT 二分答案 ThreeJS 斯坦纳树 iClone 最短路 树上DP 线段树 后缀数组 ML 交互题 AtCoder Tarjan 线性基 树形DP FFT/NTT 斜率优化 概率DP 倍增 NLP 构造 数学期望 CRT/ExCRT 状压DP 容斥原理 集训 可持久化线段树 区间DP 边分治 矩阵树定理 整体二分 启发式合并 分块 杂谈 线性DP Web3D Python DigitalHuman AC自动机 OEIS 最小生成树 C++ 动态规划 Avatar 莫比乌斯反演 思维 最短路DP 贪心 ExGCD 生成函数 随机化 后缀自动机 分层DP
Archives
  • September 20233
  • August 20231
  • July 20239
  • February 20231
  • June 20221
  • May 20221
  • September 20211
  • July 20213
©2020 - 2023 By Colythme
Framework Hexo|Theme Butterfly
Search
Loading the Database