「JOISC2017Day1」烟花棒
题目描述有 $N$ 人站在一条数轴上。他们人手一个烟花,每人手中的烟花都恰好能燃烧 $T$ 秒。每个烟花只能被点燃一次。$1$ 号站在原点,$i$ 号 $(1 \le i \le N)$ 到 $1$ 号的距离为 $X_i$。保证 $X_1 = 0$,$X_1, X_2, …, X_N$ 单调递增(可能有人位置重叠)开始时,$K$ 号的烟花刚开始燃烧,其他人的烟花均未点燃。他们的点火工具坏了,只能用燃着的烟花将未点燃的烟花点燃。当两人位置重叠且其中一人手中的烟花燃着时,另一人手中的烟花就可以被点燃。忽略点火所需时间。求至少需要以多快的速度跑,才能点燃所有人的烟花(此时可能有些人的烟花已经熄灭了)。速度必须是一个非负整数
数据范围对 $100\%$ 的数据,$1 \le K, N \le 10^5, ~ 1 \le T \le 10^9, ~ 0 \le X_i \le 10^9, ~ X_1 = 0$
题解很显然所有人一定会不断向拿烟花的人靠近
可以发现,一个拿烟花棒的人和另一个人相遇时,让另一个人跟着拿烟花的人走直至烟花在灭掉的瞬间将烟花传递的情况和在相遇时传递时一样的(注意相对位置, ...