1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
| #include <iostream> #include <cstdio> #include <cstring> #include <cmath>
using namespace std;
typedef long long LL;
const int MAXN = 1e05 + 10;
const double PI = acos (- 1.0);
int N, M; LL MOD; LL O, S, U; LL a[MAXN]= {0}, b[MAXN]= {0};
struct mcomplex { double a, b;
mcomplex (double fa = 0.0, double fb = 0.0) : a (fa), b (fb) {}
mcomplex operator + (const mcomplex& p) const { return mcomplex (a + p.a, b + p.b); } mcomplex operator - (const mcomplex& p) const { return mcomplex (a - p.a, b - p.b); } mcomplex operator * (const mcomplex& p) const { return mcomplex (a * p.a - b * p.b, a * p.b + b * p.a); } } ;
int oppo[MAXN << 2]; int limit; void FFT (mcomplex* a, int inv) { for (int i = 0; i < limit; i ++) if (i < oppo[i]) swap (a[i], a[oppo[i]]); for (int mid = 1; mid < limit; mid <<= 1) { mcomplex omega = mcomplex (cos (PI / (double) mid), inv * sin (PI / (double) mid)); for (int n = mid << 1, j = 0; j < limit; j += n) { mcomplex x = mcomplex (1.0, 0); for (int k = 0; k < mid; k ++, x = x * omega) { mcomplex a1 = a[j + k], xa2 = x * a[j + mid + k];; a[j + k] = a1 + xa2; a[j + k + mid] = a1 - xa2; } } } } void aclimit (int maxl) { int n, lim; for (n = 1, lim = 0; n <= maxl; n <<= 1, lim ++); for (int i = 0; i < n; i ++) oppo[i] = (oppo[i >> 1] >> 1) | ((i & 1) << (lim - 1)); limit = n; } mcomplex a1[MAXN << 2], a2[MAXN << 2]; void multiply (LL* A, LL* B, int n, int m) { aclimit (n + m); for (int i = 0; i < limit; i ++) a1[i] = a2[i] = mcomplex (); for (int i = 0; i <= n; i ++) a1[i] = mcomplex ((double) A[i], 0); for (int i = 0; i <= m; i ++) a2[i] = mcomplex ((double) B[i], 0); FFT (a1, 1), FFT (a2, 1); for (int i = 0; i < limit; i ++) a1[i] = a1[i] * a2[i]; FFT (a1, - 1); for (int i = 0; i <= n + m; i ++) A[i] = (LL) (a1[i].a / limit + 0.5) % MOD; } LL inv[MAXN << 2]= {0}; LL temp[MAXN << 2]= {0}; void inverse (int deg, LL* A, LL* B) { if (deg == 1) { B[0] = 1; return ; } inverse ((deg + 1) >> 1, A, B); aclimit (deg << 1); for (int i = 0; i < limit; i ++) temp[i] = 0; for (int i = 0; i < deg; i ++) temp[i] = A[i]; multiply (temp, B, deg, deg); multiply (temp, B, deg, deg); for (int i = 0; i < deg; i ++) B[i] = (2 * B[i] % MOD - temp[i] + MOD) % MOD; } LL ans[MAXN << 2]= {0}; void power (LL* A, int p) { ans[0] = 1; while (p) { if (p & 1) multiply (ans, a, M, M); multiply (a, a, M, M); p >>= 1; } }
int getnum () { int num = 0; char ch = getchar (); int isneg = 0;
while (! isdigit (ch)) { if (ch == '-') isneg = 1; ch = getchar (); } while (isdigit (ch)) num = (num << 3) + (num << 1) + ch - '0', ch = getchar ();
return isneg ? - num : num; }
int main () { M = getnum (), MOD = getnum (), N = getnum (); O = getnum (), S = getnum (), U = getnum (); a[0] = 0; for (int i = 1; i <= M; i ++) a[i] = (O * i * i + S * i + U) % MOD; for (int i = 1; i <= M; i ++) b[i] = (- a[i] + MOD) % MOD; b[0] = 1; power (ans, N + 1); for (int i = 0; i <= M; i ++) ans[i] = (- ans[i] + MOD) % MOD; ans[0] = (ans[0] + 1) % MOD; inverse (M + 1, b, inv); multiply (ans, inv, M, M); cout << ans[M] << endl;
return 0; }
|