题意

求 $\sum\limits_{i = 1}^N \sum\limits_{j = 1}^M lcm (i, j)$

Solution

易知,原式
$$
\sum\limits_{i = 1}^N \sum\limits_{j = 1}^M \frac{ij}{\gcd (i, j)}
$$
枚举 $\gcd (i, j)$ ,且将 $d$ 提出来得
$$
\sum\limits_{d = 1}^{\min (N, M)} d \sum\limits_{i = 1}^{\left\lfloor\frac{N}{d}\right\rfloor} \sum\limits_{j = 1}^{\left\lfloor\frac{M}{d}\right\rfloor} ij[(i, j) = 1]
$$
将公式 $\sum\limits_{k | n} \mu(k) = [n = 1]$ 代入,得
$$
\sum\limits_{d = 1}^{\min (N, M)} d \sum\limits_{i = 1}^{\left\lfloor\frac{N}{d}\right\rfloor} \sum\limits_{j = 1}^{\left\lfloor\frac{M}{d}\right\rfloor} ij \sum\limits_{k | (i, j)} \mu(k)
$$
套路枚举 $k$ ,得

$$
\sum\limits_{d = 1}^{\min (N, M)} d \sum\limits_{k = 1}^{\min (\left\lfloor\frac{N}{d}\right\rfloor, \left\lfloor\frac{M}{d}\right\rfloor)} \mu(k) \sum\limits_{i = 1}^{\left\lfloor\frac{N}{d}\right\rfloor} \sum\limits_{j = 1}^{\left\lfloor\frac{M}{d}\right\rfloor} ij [k | (i, j)]
$$
那么 $ij$ 存在贡献时其必定是 $k$ 的倍数,故
$$
\sum\limits_{d = 1}^{\min (N, M)} d \sum\limits_{k = 1}^{\min (\left\lfloor\frac{N}{d}\right\rfloor, \left\lfloor\frac{M}{d}\right\rfloor)} \mu(k) \sum\limits_{ki = 1}^{\left\lfloor\frac{N}{d}\right\rfloor} \sum\limits_{kj = 1}^{\left\lfloor\frac{M}{d}\right\rfloor} k^2 ij
$$
将 $k$ 提出,得
$$
\sum\limits_{d = 1}^{\min (N, M)} d \sum\limits_{k = 1}^{\min (\left\lfloor\frac{N}{d}\right\rfloor, \left\lfloor\frac{M}{d}\right\rfloor)} k^2 \mu(k) ( \sum\limits_{i = 1}^{\left\lfloor\frac{N}{kd}\right\rfloor} i) (\sum\limits_{j = 1}^{\left\lfloor\frac{M}{kd}\right\rfloor} j)
$$
那么就可以预处理 $\sum\limits_{k = 1}^n k^2 \mu(k)$ ,后面的用整除分块就好了

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <iostream>
#include <cstdio>
#include <cstring>

#define MOD 20101009

using namespace std;

typedef long long LL;

const int MAXN = 1e07 + 10;

int prime[MAXN];
int vis[MAXN]= {0};
int pcnt = 0;
int mu[MAXN]= {0};
LL sum[MAXN]= {0};
const int MAX = 1e07;
void prime_Acqu () {
mu[1] = 1;
for (int i = 2; i <= MAX; i ++) {
if (! vis[i]) {
prime[++ pcnt] = i;
mu[i] = - 1;
}
for (int j = 1; j <= pcnt && i * prime[j] <= MAX; j ++) {
vis[i * prime[j]] = 1;
if (! (i % prime[j]))
break;
mu[i * prime[j]] = - mu[i];
}
}
for (int i = 1; i <= MAX; i ++)
sum[i] = (sum[i - 1] + 1ll * i * 1ll * i % MOD * mu[i] % MOD) % MOD;
}

int N, M;
inline LL calc (int n) {
LL fn = (LL) n;
return (fn * (fn + 1) >> 1) % MOD;
}
LL Solve () {
LL ans = 0;
int limit = min (N, M);
for (int d = 1; d <= limit; d ++) {
LL total = 0;
int minlim = min (N / d, M / d);
for (int l = 1, r; l <= minlim; l = r + 1) {
r = min ((N / d) / ((N / d) / l), (M / d) / ((M / d) / l));
total = (total + (sum[r] - sum[l - 1] + MOD) % MOD * calc (N / d / l) % MOD * calc (M / d / l) % MOD) % MOD;
}
ans = (ans + (LL) (d) * total % MOD) % MOD;
}
return ans;
}

int main () {
prime_Acqu ();
scanf ("%d%d", & N, & M);
LL ans = Solve ();
cout << ans << endl;

return 0;
}

/*
4 5
*/