导数与积分
导数平均变化率函数 $y = f(x)$ 从 $x_1$ 到 $x_2$ 的平均变化率为 $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$,简记作 $\frac{\Delta y}{\Delta x}$
瞬时变化率与导数函数 $y = f(x)$ 在 $x = x_0$ 处的瞬时变化率是函数 $f(x)$ 从 $x_0$ 到 $x_0 + \Delta x$ 的平均变化率在 $\Delta x \to 0$ 时的极限,记作 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$
一般地,我们称上文的瞬时变化率为函数 $y = f(x)$ 在 $x = x_0$ 处的导数,记作 $f’(x_0)$ 或 $\frac{\mathrm{d} y}{\mathrm{d} x} \bigg|_{x = x_0}$
实际上,导数描述的即为任何事物的瞬时变化率
Example:
求 $y = f(x) = ...