1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
| import sys import os import re import random import tarfile from psutil import sensors_battery import requests import numpy as np import paddle import paddle.nn.functional as F from paddle.nn import LSTM, Embedding, Dropout, Linear from torch import dropout
use_gpu = True paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')
''' # download IMDB dataset def download_IMDB (): url = "https://dataset.bj.bcebos.com/imdb%2FaclImdb_v1.tar.gz" web = requests.get (url) corpus = web.content
with open ('./Practice/NLP/IMDB.tar.gz', 'wb') as f: f.write (corpus) f.close ()
download_IMDB () '''
print ("Start Loading IMDB...")
def load_IMDB (atype): dataset = [] for label in ['pos', 'neg']: with tarfile.open ('./aclImdb.tar.gz') as f: path = 'aclImdb/train/' + label + '/.*\.txt$' if atype == 'train' else 'aclImdb/test/' + label + '/.*\.txt$' path_compiler = re.compile (path) tf = f.next () while tf != None: if (bool (path_compiler.match (tf.name))): content = f.extractfile (tf).read ().decode () ctype = 1 if label == 'pos' else 0 dataset.append ((content, ctype)) tf = f.next () return dataset
train_dataset = load_IMDB ('train') test_dataset = load_IMDB ('test')
print ("End Loading IMDB") print ("Start Data Preprocessing...")
def word_division (corpus): dataset = [] for sentence, label in corpus: sentence = sentence.strip ().lower () sentence = sentence.split (' ')
dataset.append ((sentence, label)) return dataset
train_dataset = word_division (train_dataset) test_dataset = word_division (test_dataset)
def build_dict (corpus): word_freq = dict () for sentence, label in corpus: for word in sentence: if not word in word_freq: word_freq[word] = 0 word_freq[word] += 1 word_freq = sorted (word_freq.items (), key = lambda dic: dic[1], reverse = True)
word2id_dict = dict () id_freq = dict ()
word2id_dict['[oov]'] = 0 id_freq[0] = 1e10 word2id_dict['[blank]'] = 1 id_freq[1] = 1e10
for word, freq in word_freq: id = len (word2id_dict) word2id_dict[word] = id id_freq[id] = freq return id_freq, word2id_dict
id_freq, word2id_dict = build_dict (train_dataset) vocab_size = len (word2id_dict)
def convert_sentence2id (corpus, word2id_dict): dataset = [] for sentence, label in corpus: sentence = [word2id_dict[word] if word in word2id_dict \ else word2id_dict['[oov]'] for word in sentence] dataset.append ((sentence, label)) return dataset
train_dataset = convert_sentence2id (train_dataset, word2id_dict) test_dataset = convert_sentence2id (test_dataset, word2id_dict)
print ("End Data Preprocessing") print ("Start Building Batch...")
def build_dataloader (word2id_dict, corpus, EPOCH_NUM, batch_size, maxlen, shuffle = True): sentence_batch = [] label_batch = [] for epoch in range (EPOCH_NUM): if shuffle: random.shuffle (corpus) for sentence, label in corpus: sample_sentence = sentence[:min (len (sentence), maxlen)] if len (sample_sentence) < maxlen: for i in range (maxlen - len (sample_sentence)): sample_sentence.append (word2id_dict['[blank]']) sentence_batch.append ([[id] for id in sample_sentence]) label_batch.append ([label])
if len (sentence_batch) == batch_size: yield np.array (sentence_batch).astype ('int64'), \ np.array (label_batch).astype ('int64') sentence_batch = [] label_batch = [] if len (sentence_batch) > 0: yield np.array (sentence_batch).astype ('int64'), \ np.array (label_batch).astype ('int64')
batch_size = 128 EPOCH_NUM = 5 maxlen = 128
train_dataloader = build_dataloader (word2id_dict, train_dataset, batch_size = batch_size, \ EPOCH_NUM = EPOCH_NUM, maxlen = maxlen, shuffle = True)
print ("End Building Batch")
class LSTMClass (paddle.nn.Layer): def __init__ (self, embedding_size, vocab_size, hidden_size, init_scale = 0.1, class_num = 2, time_steps = 128, \ num_layers = 1, dropout_rate = None): super (LSTMClass, self).__init__ () self.embedding_size = embedding_size self.vocab_size = vocab_size self.init_scale = init_scale self.hidden_size = hidden_size self.class_num = class_num self.time_steps = time_steps self.num_layers = num_layers self.dropout_rate = dropout_rate
self.embedding = Embedding (num_embeddings = self.vocab_size, embedding_dim = self.embedding_size, sparse = False, \ weight_attr = paddle.ParamAttr ( initializer = paddle.nn.initializer.Uniform ( low = - init_scale, high = init_scale))) self.LSTM = LSTM (input_size = self.hidden_size, hidden_size = self.hidden_size, num_layers = self.num_layers) self.fc = Linear (in_features = self.hidden_size, out_features = self.class_num) self.dropout = Dropout (p = self.dropout_rate) def forward (self, dataset): batch_size = dataset.shape[0]
init_hidden = np.zeros ((self.num_layers, batch_size, self.hidden_size), dtype = 'float32') init_hidden = paddle.to_tensor (init_hidden) init_hidden.stop_gradient = True init_cell = np.zeros ((self.num_layers, batch_size, self.hidden_size), dtype = 'float32') init_cell = paddle.to_tensor (init_cell) init_cell.stop_gradient = True
x = self.embedding (dataset) x = paddle.reshape (x, shape = [batch_size, self.time_steps, self.embedding_size]) if self.dropout_rate != None and self.dropout_rate > 0: x = self.dropout (x) _, (ret_hidden, _) = self.LSTM (x, (init_hidden, init_cell)) ret_hidden = ret_hidden[- 1]
result = self.fc (ret_hidden)
return result
dropout_rate = 0.2 num_layers = 3 hidden_size = 256 embedding_size = 256 vocab_size = len (id_freq)
model = LSTMClass (embedding_size, vocab_size, hidden_size, num_layers = num_layers, dropout_rate = dropout_rate) optimizer = paddle.optimizer.Adam (learning_rate = 0.0001, parameters = model.parameters ())
print ("Start Training...")
def train (model): model.train ()
for step, (sentence, label) in enumerate (train_dataloader): sentence = paddle.to_tensor (sentence) label = paddle.to_tensor (label)
result = model (sentence)
loss = F.cross_entropy (result, label) loss = paddle.mean (loss)
loss.backward () optimizer.step () optimizer.clear_grad ()
if step % 100 == 0: print ("step %d, loss %.3f" % (step, loss.numpy ()[0]))
train (model) print ("End Training") paddle.save (model.state_dict (), './LSTM.pt')
print ("Start Testing...")
param_dict = paddle.load ('./LSTM.pt') model.load_dict (param_dict)
def evaluate (): model.eval ()
test_dataloader = build_dataloader (word2id_dict, test_dataset, 1, batch_size, maxlen, False)
correct, total = 0, 0 for sentence, label in test_dataloader: sentence = paddle.to_tensor (sentence) label = paddle.to_tensor (label)
predict = model (sentence) predict = F.softmax (predict)
total += len (label) predict = predict.numpy () for i in range (len (label)): if label[i][0] == 1: if predict[i][1] > predict[i][0]: correct += 1 else: if predict[i][0] > predict[i][1]: correct += 1 accuracy = correct / total print ("Accuracy %.3f:" % accuracy)
evaluate ()
print ("End Testing")
|